Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy.

نویسندگان

  • M A Bernstein
  • S B Fain
  • S J Riederer
چکیده

Standard, MR spin-warp sampling strategies acquire data on a rectangular k-space grid. That method samples data from the "corners" of k-space, i.e., data that lie in a region of k-space outside of an ellipse just inscribed in the rectangular boundary. Illustrative calculations demonstrate that the data in the corners of k-space contribute to the useful resolution only if an interpolation method such as a zero-filled reconstruction is used. The consequences of this finding on data acquisition and data windowing strategies are discussed. A further implication of this result is that the spatial resolution of images reconstructed with zero-filling (but without radial windowing) is expected to display angular dependence, even when the phase- and frequency-encoded resolutions are identical. This hypothesis is experimentally verified with a slit geometry phantom. It is also observed that images reconstructed without zero-filling do not display the angular dependence of spatial resolution predicted solely by the maximal k-space extent of the raw data. The implications of these results for 3D contrast-enhanced angiographic acquisitions with elliptical centric view ordering are explored with simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the temporal resolution of functional MR imaging using keyhole techniques.

Using a keyhole technique, it is shown that the data acquisition rate of gradient-echo imaging for functional MRI (fMRI) studies can be increased substantially. The resulting enhancement of the temporal resolution of fMRIs was accomplished without modifying the hardware of a conventional MRI system. High spatial resolution fMRI images were first collected with conventional full k-space acquisit...

متن کامل

Localized spatio-temporal constraints for accelerated CMR perfusion.

PURPOSE To develop and evaluate an image reconstruction technique for cardiac MRI (CMR) perfusion that uses localized spatio-temporal constraints. METHODS CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t-based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolutio...

متن کامل

MRI Inter - slice Reconstruction

MRI reconstruction using super-resolution is presented and shown to improve spatial resolution in cases when spatially-selective RF pulses are used for localization. In 2-D multislice MRI, the resolution in the slice direction is often lower than the in-plane resolution. For certain diagnostic imaging applications, isotropic resolution is necessary but true 3-D acquisition methods are not pract...

متن کامل

The effect of focal spot size on the spatial resolution of variable resolution X-ray CT scanner

Background: A variable resolution X-ray (VRX) CT scanner provides a great increase in the spatial resolution. In VRX CT scanners, the spatial resolution of the system and its field of view (FOV) can be changed according to the object size. One of the main factors that limit the spatial resolution of VRX CT scanner is the effect of the X-ray focal spot. Materials and Methods: A theoreti...

متن کامل

Assessment Effect of the Spatial Resolution of Digital Elevation Model on Daily Discharge Estimation of Arazkuseh Watershed Using SWAT Model

The spatial quality of the Digital Elevation Model (DEM) has a great effect on the Soil and Water Assessment Tool (SWAT) semi-distributed model. The purpose of this study was to evaluate the effect of spatial accuracy of three DEMs with spatial resolutions of 10, 50 and 200 m on the results of daily discharge simulation in the Arazkuseh subwatershed located in Gorganroud watershed, Golestan pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2001